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a b s t r a c t 

As a result of several successful applications in computer vision and image processing, sparse represen- 

tation (SR) has attracted significant attention in multi-sensor image fusion. Unlike the traditional mul- 

tiscale transforms (MSTs) that presume the basis functions, SR learns an over-complete dictionary from 

a set of training images for image fusion, and it achieves more stable and meaningful representations 

of the source images. By doing so, the SR-based fusion methods generally outperform the traditional 

MST image fusion methods in both subjective and objective tests. In addition, they are less susceptible 

to mis-registration among the source images, thus facilitating the practical applications. This survey pa- 

per proposes a systematic review of the SR-based multi-sensor image fusion literature, highlighting the 

pros and cons of each category of approaches. Specifically, we start by performing a theoretical inves- 

tigation of the entire system from three key algorithmic aspects, (1) sparse representation models; (2) 

dictionary learning methods; and (3) activity levels and fusion rules. Subsequently, we show how the 

existing works address these scientific problems and design the appropriate fusion rules for each appli- 

cation such as multi-focus image fusion and multi-modality (e.g., infrared and visible) image fusion. At 

last, we carry out some experiments to evaluate the impact of these three algorithmic components on 

the fusion performance when dealing with different applications. This article is expected to serve as a 

tutorial and source of reference for researchers preparing to enter the field or who desire to employ the 

sparse representation theory in other fields. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Due to recent technological advancements, extensive varieties

f imaging sensors have been employed in many applications in-

luding remote sensing, medical imaging, video surveillance, ma-

hine vision and security. Thus, finding a way to most effectively

tilize the information captured from these multiple sensors, pos-

ibly of different modalities, is of considerable interest. Image fu-

ion provides one versatile solution, where multiple aligned images

cquired by different sensors are merged into a composite image.

he properly fused image is more informative than any of the in-

ividual input images and can thus better interpret the scene [1] .

s a result, multi-sensor image fusion has always been an active

esearch topic, facilitating a variety of vision-related applications. 
∗ Corresponding author. 
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To date, a large number of image fusion algorithms have been

roposed [2–6] , in which multiscale transform-based (MST) fusion

ethods are the most popular [7–9] . Traditional MST fusion meth-

ds are generally those using pyramids [10] and wavelet trans-

orms [11] . Recently developed fusion methods can be considered

s their variations and extensions employing multiscale geomet-

ic analysis (MGA) tools, such as the Curvelet Transform [12] , the

hearlet Transform [13] and the nonsubsampled Contourlet Trans-

orm (NSCT) [14] . Thorough reviews on such methods can be found

n [2,7] . 

Sparse representation (SR) [15] has recently drawn significant

nterest in computer vision and image processing due to its en-

anced performance in many applications, such as face recognition

15] , action recognition [16] , and object tracking [17] . The main

dea of SR theory lies in the fact that an image signal can be rep-

esented as a linear combination of the fewest possible atoms or

ransform basis primitives in an over-complete dictionary. Spar-

http://dx.doi.org/10.1016/j.inffus.2017.05.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/inffus
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2017.05.006&domain=pdf
mailto:jungonghan77@gmail.com
http://dx.doi.org/10.1016/j.inffus.2017.05.006
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Fig. 1. Numbers of publications on SR-based fusion methods, obtained from the 

Web of Science indexing service. 
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sity means that only a small number of atoms are required to ac-

curately reconstruct a signal, i.e., the coefficients become sparse.

Over-completeness indicates that the number of atoms in the dic-

tionary is larger than the dimension of the signal. Thus, a sufficient

number of atoms in an over-complete dictionary permit an accu-

rate sparse representation of signals [18] . 

Not surprisingly, SR has also attracted significant attention in

the research field of image fusion [18–21] . Similar to the traditional

MST image fusion methods, most of the SR-based image fusion

methods also belong to the transform-domain-based techniques. 1 

However, there are two main differences between the SR-based

and the traditional MST-based fusion methods [18,19] . 

1. The traditional MSTs usually fix their basis functions in advance

for image analysis and fusion. Due to the limitations of pre-

defined basis functions, some significant features (e.g., edges)

of source images may not be well expressed and extracted,

thereby dramatically degrading the performance of fusion. In

contrast, SR generally learns an over-complete dictionary from a

set of training images for image fusion, which captures intrinsic

data-driven image representations tending to be domain agnos-

tic. The over-complete dictionary contains richer basis atoms

allowing more meaningful and stable representations of source

images. By doing so, SR-based fusion methods generally outper-

form the traditional MST image fusion methods in both subjec-

tive and objective tests. 

2. The traditional MST fusion methods are implemented in a mul-

tiscale manner, where the selection of the MST decomposition

level becomes thereby crucial and tricky. To ensure spatial de-

tails can be extracted from the source images, the decomposi-

tion level is often set too large. In this case, one coefficient in

the low-pass band has a great impact on a large set of pixels

in the fused image. Accordingly, an error in the low-pass sub-

band (mainly caused by noise or mis-registration between the

source images) will lead to serious artificial effects [19] . The fu-

sion of the high-pass sub-band coefficients is also sensitive to

noise and mis-registration in this case. Consequently, the MST

fusion methods are generally sensitive to mis-registration, im-

pending their usage in the practical applications where a per-

fect spatial alignment of different source images is unachiev-

able. In contrast, the SR-based fusion methods are generally im-

plemented in a patch way. More specifically, the source images

are first divided into a number of patches of the same size, and

the fusion is carried out at the patch level. Moreover, in order

to reduce block artifacts and improve the robustness against

mis-registration, a sliding window with a step length equal to a

fixed number of pixels (e.g., one pixel) is often used in the SR-

based fusion methods. In other words, these patches overlap by

a fixed number of pixels along the horizontal and vertical di-

rections. Generally, SR-based fusion methods are more robust

to mis-registration than MST-based ones. 

1.1. SR Image fusion in a nutshel 

Since Yang and Li [18] took the first step in applying the SR the-

ory to the image fusion field, a number of SR-based image fusion

methods have been proposed. As shown in Fig. 1 , the growing ap-

peal of this research area can be observed from the steady increase

in the number of scientific papers published in academic journals

and magazines since 2010. 

The basic idea behind SR-based image fusion is that image sig-

nals can be represented as a linear combination of a “few” atoms

from a pre-learned dictionary, and the sparse coefficients describe
1 As discussed later, parts of the SR-based fusion methods belong to the spatial- 

domain-based methods. 

i  

c  

f  

r  
he salient features of the source images. As shown in Fig. 2 , the

ain steps in most SR-based image fusion methods include: (a)

egment the source images into some overlapping patches and

ewrite each of these patches as a vector; (b) perform sparse

epresentation on the source image patches using pre-defined or

earned dictionaries; (c) combine the sparse representations by

ome fusion rules; (d) reconstruct the fused images from their

parse representations. 

The dictionaries employed in these methods may be directly

btained from some fixed (e.g., DCT and Wavelet) basis [18] . They

an also be learned from a set of auxiliary images ( global trained

ictionary ) [22] or from the input images themselves ( adaptively

rained dictionary ) [23] using some learning methods, such as K-

VD [24] . Sometimes, a pair of coupled dictionaries are even si-

ultaneously learned from a high-spatial-resolution image and its

patially-degraded version. Using the coupled dictionaries allows

o produce a fused image with higher spatial-resolution [25,26] . 

Different sparse representation models have been used in image

usion methods. They include: (1) the traditional SR model [15] in

hich the sparsity constraint (using l 0 -norm or l 1 -norm) is per-

ormed on the representation coefficients; (2) the non-negative SR

odel [27] in which the sparsity and non-negativity constraints

re jointly imposed on the representation coefficients; (3) the ro-

ust SR model [28] in which the sparsity constraint is imposed on

he reconstruction errors as well as on the representation coeffi-

ients; (4) the group-sparsity SR model [29] in which the nonzero

epresentation coefficients are forced to occur in clusters (called

roup-sparsity) rather than appear randomly; (5) the joint-sparse

epresentation (JSR) model [30] which indicates that different sig-

als from various sensors of the same scene form an ensemble. All

ignals in one ensemble have a common sparse component, and

ach employs an individual sparse component. 

When fusing the source image patches, the l 1 - or l 2 -norm of

he representation coefficients [18] is generally used. It could pos-

ibly benefit from other information to calculate the activity level

9] , which measures the information contained in these represen-

ation coefficients that is deemed useful during the fusion. Statisti-

al characteristics, such as the sparseness level [27] of their repre-

entation coefficients, might also be employed to determine the ac-

ivity level during the fusion. The energy of the sparse reconstruc-

ion errors [28] has been used to determine the activity level when

using multi-focus images. With an activity calculation defined, a

aximum-selecting or a weighted-averaging fusion rule can be

mployed to directly combine source image patches or indirectly

ombine representation coefficients of the source image patches

9] . If the representation coefficients are to be combined, the fused

mage is reconstructed using the pre-learned dictionary and the

ombined representation coefficients (called the transform-domain

usion method) [27,29–31] . Otherwise, the fused image can be di-

ectly obtained from the source image patches according to their



Q. Zhang et al. / Information Fusion 40 (2018) 57–75 59 

Fig. 2. Diagram of the SR-based image fusion method. (Credit to [2] ). 
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Table 1 

List of vector and matrix related notations. 

Symbols Definition 

x ( i ) The i th entry of the vector x 

X ( i, j ) The ( i, j )th entry of the matrix X 

‖ x ‖ 0 l 0 -norm of the vector x , i.e., the number of nonzero entries in the 

vector x 

‖ x ‖ 1 l 1 -norm of the vector x , ‖ x ‖ 1 = 

∑ 

i | x (i ) | 
‖ x ‖ 2 l 2 -norm of the vector x , ‖ x ‖ 2 = 

√ ∑ 

i x 
2 (i ) 

‖ X ‖ 0 l 0 -norm of the matrix X , i.e., the number of nonzero entries in the 

matrix X 

‖ X ‖ 1 l 1 -norm of the matrix X , ‖ X ‖ 1 = 

∑ 

i, j | X(i, j) | 
‖ X ‖ F Frobenius -norm of the matrix X , ‖ X ‖ F = 

√ ∑ 

i, j X 
2 (i, j) 

‖ X ‖ 2, 1 l 2, 1 -norm of the matrix X , ‖ X ‖ 2 , 1 = 

∑ 

j 

√ ∑ 

i X 
2 (i, j) 

( · ) T Transpose of a vector or a matrix 

X † Pseudo inverse of the matrix X 
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ctivity level (called the spatial-domain fusion method) [23,28] .

he preferred approach depends on the specific intended applica-

ions (e.g., fusion of multi-focus images or multi-modality images).

Based on the above analysis, in this paper we will review sparse

epresentation (SR) image fusion methods from the following four

ey aspects: (1) sparse representation models; (2) dictionary learn-

ng methods; (3) activity levels and fusion rules; and finally, (4) ap-

lications to multi-focus images and multi-modality (e.g., infrared

nd visible) image fusion. 

.2. Why this survey? 

As pointed out previously, multi-sensor image fusion has always

een a hot research topic in the area of image processing, and a

onsiderable number of publications emerge every year. The early

eviews [2,5,9,32,33] that focus mainly on traditional MST-based

2,9] or spatial-domain-based (e.g., patches) fusion methods are 

utdated as they missed out on important recent advances, such as

R-based image fusion methods. In addition, most of them are only

imited to one single application of image fusion, such as multi-

ocus [9] , medical [5] or remote sensing image fusion [32,33] . On

he other hand, in this paper, we will thoroughly discuss the SR-

ased fusion methods as well as their applications to fusion of

oth multi-focus and multi-modality images. Recently, some re-

iew papers have also appeared on sparse representation theory

34,35] with the aim to explain the mathematical and theoretical

spects of SR models, but they do not particularly discuss image

usion problems. To the best of our knowledge, there are no previ-

us papers where SR-based fusion methods are reviewed and eval-

ated. Therefore, it is desirable to put a thorough survey concern-

ng SR-based image fusion in place, which may be useful to a va-

iety of audience, ranging from image fusion learners intended to

uickly grasp the current progress in this research area as a whole,

o image fusion practitioners interested in applying SR methods to

heir own problems. 

.3. Paper outlines 

The rest of this paper is organized as follows. The available SR

odels are thoroughly reviewed in Section 2 . In Section 3 , dictio-

ary learning methods are surveyed. In Section 4 , the activity level

alculations and fusion rules exploited in the literature with dif-

erent applications are discussed. In Section 5 , the impact of the

hoice of the components presented in Sections 2 –4 on the fusion

erformance is examined. Finally, conclusions and suggestions for

uture work are provided in Section 6 . Fig. 3 summarizes the struc-

ure of this paper. 
.4. Notations 

We assume that the reader has some basic knowledge of linear

lgebra and optimization theories. Throughout the paper, a vector

s denoted by a low-case letter. A matrix is denoted by a capital

etter. All the elements in a vector or a matrix are real-valued.

iven a vector x and a matrix X , some notations related to them

sed in this paper are listed in Table 1 . 

. Sparse representation models 

Since the traditional SR model [15] was first applied to multi-

ensor image fusion, many of its extensions have also been applied

o image fusion. For example, a non-negative sparse representation

NNSR) model was introduced for image fusion in [27] . Unlike the

raditional SR model that just imposes the sparsity constraint on

he representation coefficients, the NNSR model imposes the joint

parsity and non-negativity constraints on the representation coef-

cients. From the image patch encoding point of view, the inter-

retation of NNSR model is more intuitive than the traditional SR

odel. 

Assuming the imaging sensors observe the same scene, the

ource images captured by these sensors are expected to pos-

ess common (or redundant) and complementary (distinct) fea-

ures. Such ideas map well into the joint sparse representation

JSR) model [30] , in which all the each sensor image from the same

nsemble is automatically decomposed into a common component

hat can be shared by all the images and an innovation component

hat describes individual differences. As a result, the JSR model at-

racts more attention in image fusion, especially in multi-modality

mage fusion. 
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Fig. 3. Organization of this paper. 
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2 Here, a matrix D = [ d i, j ] is called non-negative if each of its elements d i, j is 

non-negative. For simplicity, a non-negative matrix D is denoted by D ≥ 0. 
In [28] , a robust sparse representation (RSR) model was intro-

duced to extract the detailed information in a set of multi-focus in-

put images. The RSR model replaces the conventional least-squared

reconstruction error with a so-called sparse reconstruction error.

By using RSR, any multi-focus image can be decomposed into a

fully-defocus image and a sparse but detailed image denoted by

the sparse reconstruction error. Distinct from traditional SR-based

fusion methods, the reconstruction errors are employed instead

of the usual sparse representation coefficients to guide the fusion

process. Superiority over the latter SR-based methods is verified in

the experimental results. 

In this section, we will review some SR models that have been

applied in multi-sensor image fusion. We will start by introducing

some specific concepts related to sparse representation, so that the

reader can understand the basic concepts associated with this the-

ory. Then we will extend these concepts to some more complex

representation models. 

2.1. Sparse representation (SR) model 

The sparse representation model relies on the assumption that

many important signals can be represented or approximately rep-

resented as a linear combination of a “few” atoms from a redun-

dant dictionary [19,23] . That is, given such a redundant dictionary

D ∈ R n × M ( n < M ) containing M prototype n -dimensional signals

that are referred to as atoms formed by the columns of the matrix

M , a signal y ∈ R n can be expressed as y = Dx or y ≈ Dx . The vector

x ∈ R M contains the coefficients that represent the signal y in terms

of the dictionary D . As the dictionary is redundant, the vector x is

not unique. Thus, the SR model was proposed as a method for de-

termining the solution vector x with the fewest non-zero compo-

nents [23] . Mathematically, this can be achieved exactly assuming

negligible noise or inexactly considering noise by solving the opti-

mization problem 

min 

x 
‖ 

x ‖ 0 s.t. y = Dx, (1)

or 

min 

x 
‖ 

x ‖ 0 s.t. ‖ 

y − Dx ‖ 

2 
2 ≤ ε. (2)

The optimization of the above formulas is NP-hard and thus re-

quires approximate techniques, such as the matching pursuit (MP)

[36] , orthogonal matching pursuit (OMP) [37] or simultaneous
MP (SOMP) [38] algorithms to obtain solutions with low com-

lexity. 

Based on recent developments in SR and compressed sensing,

he non-convex l 0 -minimization problems in (1) and (2) can be re-

axed to obtain the convex l 1 -minimization problems [15,39] in 

in 

x 
‖ 

x ‖ 1 s.t. y = Dx, (3)

nd 

in 

x 
‖ 

x ‖ 1 s.t. ‖ 

y − Dx ‖ 

2 
2 ≤ ε (4)

olutions can be obtained by using linear programming methods

15,40] . 

.2. Non-negative sparse representation (NNSR) model 

Considering that properly scaled black and while images can be

nterpreted as images with positive entries, Wang et al. [27] in-

roduced a non-negative sparse representation (NNSR) model and

pplied it to the fusion of infrared and visible light images. Differ-

nt from the traditional SR model which only emphasizes the spar-

ity constraint using l 0 -norm or l 1 -norm, NNSR jointly imposes the

parsity and non-negativity constraints on the representation coef-

cients. It can also be seen as an extension of the traditional non-

egative matrix factorization [41] which adds a sparsity inducing

enalty. 

Let Y = [ y 1 , y 2 , . . . , y N ] be an observed non-negative data ma-

rix 2 of size n × N representing a set of N source image patches,

ach column of which is a data vector (i.e., an image patch) y i ∈ R n .

hen, given a dictionary D ∈ R n × M with M non-negative prototype

toms, the NNSR model coefficients can be obtained from 

in 

x i 

N ∑ 

i =1 

(
1 

2 

‖ 

y i − D x i ‖ 

2 
2 + λ‖ 

x i ‖ 1 

)
s.t. D ≥ 0 , x i ≥ 0 , i = 1 , 2 , . . . , N 

, (5)

here x i ∈ R M denotes the representation coefficients of the data

 i . Here, owing to the non-negativity, the l 1 -norm of the vector x i 
s also calculated as the sum of the components in the vector x i .
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m

refers to the regularization parameter. When λ = 0 , NNSR is re-

uced to the non-negative matrix factorization. This problem can

e simply and efficiently solved by the non-negative sparse coding

lgorithm [42] . 

Similar to the traditional SR model, NNSR can also encode the

ource images efficiently by using a few “active” components. In

ontrast, the non-negativity constraint makes the representation

urely additive (allowing no subtractions), thus enabling NNSR to

chieve an easy or intuitive interpretation of the encodings of the

ource images [27] . 

.3. Joint sparse representation (JSR) model and a generalized version 

The term “Joint Sparsity”, that is, the common sparsity of the

ntire signal ensemble, was first introduced in [43] . Three joint

parsity models (JSMs) for different situations were presented,

SM-1 (sparse common component + innovations), JSM-2 (com-

on sparse supports) and JSM-3 (non-sparse common +sparse

nnovations). When different imaging sensors observe the same

cene, the source images captured by the sensors are generally ex-

ected to possess both “common (or correlated)” and “innovation

or complementary)” information. Accordingly, it is not surprising

hat JSM-1 has been shown to be more suitable for many image

usion applications, especially for the fusion of multi-modality im-

ges [30] , when compared with JSM-2 and JSM-3. 

In the JSM-1 (or JSM 

3 ) model, all signals share a common com-

onent while each individual signal contains an innovation compo-

ent. Let Y k ∈ R n × L ( k = 1 , 2 , . . . , K) denote the L signals of dimen-

ion n from the k th sensor which can be represented using [30] 

 k = Y C + Y U k = D X 

C + DX 

U 
k , k = 1 , 2 , . . . , K, (6)

here Y C = D X C denotes the common component for all signals,

nd Y U 
k 

= DX U 
k 

denotes the innovation component for the k th indi-

idual signal. D ∈ R n × M ( n < M ) is an over-complete dictionary. X 

C 

nd X U 
k 

∈ R M×L are the sparse coefficient matrices for the common

nd innovation components, respectively. 

Let

 = 

⎡ 

⎣ 

Y 1 
. . . 

Y K 

⎤ 

⎦ ∈ R 

nK×L , (7) 

 = 

⎡ 

⎢ ⎢ ⎣ 

D D 0 · · · 0 

D 0 D · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
D 0 0 · · · D 

⎤ 

⎥ ⎥ ⎦ 

∈ R 

nK ×(K +1) M , (8) 

 = 

⎡ 

⎢ ⎢ ⎣ 

X 

C 

X 

U 
1 
. . . 

X 

U 
K 

⎤ 

⎥ ⎥ ⎦ 

∈ R 

(K+1) M×L , (9) 

here 0 ∈ R n × M is a matrix of zeros. Under the assumed

parseness, the coefficients of JSM model can be computed using

30,44,45] 

in 

X 
‖ 

X ‖ 0 s.t. ‖ 

Y − D X ‖ 

2 
F ≤ ε, (10) 

here ε ≥ 0 is the error tolerance. Similar to solving (3) in the

raditional SR model, the joint sparse coefficient matrix X of the

SM model in (10) can be obtained by using the previously dis-

ussed sparse approximation algorithms (e.g., the OMP algorithm

37] ). Fig. 4 illustrates the common and complementary informa-
3 In the remaining discussion, the symbol “JSM” denotes the JSM-1 model for 

implicity unless expressly specified otherwise. o
ion obtained by using the JSR model, 4 where Fig. 4 (c) contains

he common background information acquired by the two sensors,

hile Fig. 4 (d) and (e) contain the complementary information

etween the two source images. Especially, the man behind the

ree captured by the infrared imaging sensor is clearly displayed in

ig. 4 (e). 

Considering that the subspace spanned by the innovation com-

onent might not be the same as the subspace spanned by the

ommon component, Zhang et al. [30] presented a generalized ver-

ion of the JSM model . In the generalized JSM model, the signals

rom one ensemble are assumed to depend on two dictionaries, i.e.

he common dictionary D 

C ∈ R n × M and the innovation dictionary

 

U ∈ R n × M , instead of a single dictionary as in the JSM model.

ccordingly, (6) and the dictionary matrix D in (8) are extended in

he generalized JSM model [30] , respectively to 

 k = Y C + Y U k = D 

C X 

C + D 

U X 

U 
k , k = 1 , 2 , . . . , K, (11)

 = 

⎡ 

⎢ ⎢ ⎣ 

D 

C D 

U 0 · · · 0 

D 

C 0 D 

U · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 

D 

C 0 0 · · · D 

U 

⎤ 

⎥ ⎥ ⎦ 

∈ R 

nK ×(K +1) M . (12) 

According to (10) , the generalized JSM model can be solved by

sing the same methods as those for the traditional SR and JSM

odels. In [30] , the generalized JSM model is shown to be some-

imes superior to the JSM model in terms of the ability to extract

etailed information from the resulting image representations but

ith little extra computational complexity. 

.4. Group sparse representation model 

Most of the existing SR models mentioned previously assume

hat the non-zero coefficients appear randomly, and do not con-

ider the intrinsic structure of the signals. For that, Li et al.

ntroduced a group sparse representation (GSR) model [29] , in

hich the cluster structure sparsity prior is incorporated and the

on-zero elements are forced to occur in clusters (called group-

parsity), rather than appear randomly. 

Let G = { G 1 , G 2 , . . . , G g } be a partition of the index set

 

1 , 2 , . . . , M } , where g is the number of groups. Given a dictio-

ary D = 

[
D G 1 

, D G 2 
, . . . , D G g 

]
∈ R n ×M where D G i 

denotes the sub-

ictionary with columns identical to D in group G i , any signal y

 R n can be represented as [29] 

 = Dx = 

[
D G 1 , D G 2 , . . . , D G g 

][
x T G 1 , x 

T 
G 2 

, . . . , x T G g 

]T 
, (13)

here x = [ x T 
G 1 

, x T 
G 2 

, . . . , x T 
G g 

] T ∈ R M denotes the representation coef-

cients, and x G i ( i = 1 , 2 , . . . , g) are the representation coefficients

ith respect of the sub-dictionary D G 2 
. In the GSR model, the

parse representation coefficients are found from 

in 

x 
‖ 

x ‖ 2 , 0 s.t. y = Dx or ‖ 

y − Dx ‖ 

2 
2 ≤ ε, (14) 

here ‖ x ‖ 2 , 0 = 

∑ g 
i =1 

I 
(∥∥x G i 

∥∥
2 

)
, and I ( · ) is an indicator function,

.e., 

 

(∥∥x G i 

∥∥
2 

)
= 

{ 

1 , if 
∥∥x G i 

∥∥
2 

> 0 

0 , otherwise 
. (15) 

Similarly, the non-convex l 2, 0 -minimization optimization prob-

em in (14) can be relaxed by solving the following convex l 2, 1 -

inimization problem in (16) 

in 

x 
‖ 

x ‖ 2 , 1 s.t. y = Dx or ‖ 

y − Dx ‖ 

2 
2 ≤ ε, (16) 
4 The test images in Figs. 4, 10 and 12 are downloaded from www.imagefusion. 

rg . 

http://www.imagefusion.org
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Fig. 4. Illustration of the common and innovation information obtained by using the JSR model. (a) and (b) test images captured by two different sensors; (c) The common 

component between the two test images; (d) and (e) The innovation components of the test images in (a) and (b), respectively. 
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where ‖ x ‖ 2 , 1 = 

∑ g 
i =1 

∥x G i 
∥

2 
. The GSR model can be effectively

solved via the Group Orthogonal Matching Pursuit (GOMP) algo-

rithm [46] . 

Fig. 5 illustrates the representation coefficients obtained by us-

ing the SR model and the GSR model. In the GSR model, a dictio-

nary containing 8 sub-dictionaries (i.e., g = 8 in (13)) is employed.

As shown in Fig. 5 (b) and (d), the coefficients obtained by using SR

model are sparsely and randomly distributed along the entire hor-

izontal axis. In contrast, the coefficients obtained by using the GSR

model are just sparsely located at a few segments along the hor-

izontal axis as shown in Fig. 5 (c) and (e). This demonstrates that

each local patch can be well reconstructed by using only a few

sub-dictionaries, instead of a few random dictionary atoms, in the

GSR model. 

2.5. Robust sparse representation (RSR) model and a multi-task 

version 

As discussed previously, the traditional SR, NNSR, JSR and GSR

models are seen to impose either an l 0 -norm or l 1 -norm mini-

mization on the representation coefficients to achieve a sparse rep-

resentation of a signal, while imposing an l 2 -norm minimization

on the reconstruction errors (e.g., the component 1 
2 ‖ y i − D x i ‖ 2 2 in

(5)). 5 These approaches work well for signals with small levels of

Gaussian noise. However, if the signal contains non-Gaussian noise

or is corrupted by sparse but strong “outliers”, it may not be pos-

sible to achieve a satisfactory result [15] . 

In [28] , Zhang and Levine presented a robust sparse represen-

tation (RSR) model by imposing sparse constraints on the recon-

struction errors as well as on the representation coefficients. More

specifically, let Y = [ y 1 , y 2 , . . . , y N ] be an observed data matrix of

size n × N , each column of which is a data vector y i ∈ R n . Fur-

ther, suppose the observed data Y is partially corrupted by errors

or noise E ∈ R n × N . Then, given a dictionary D ∈ R n × M with M

prototype atoms, the coefficients of the RSR model are assumed to
5 In fact, the problems in (3) and (4) are equivalent to the following problem: 

min x 
1 
2 ‖ y − Dx ‖ 2 2 + λ‖ x ‖ 1 . Thus, the traditional SR model also imposes an l 2 -norm 

minimization on the reconstruction errors. 

R  

a  

i  

f  

t  
ollow [28] 

in 

X,E 
‖ 

X ‖ 1 + λ‖ 

E ‖ 2 , 1 s.t. Y = DX + E, (17)

here the matrix X ∈ R M × N denotes the sought after matrix of

oefficients, and each of its columns x i ∈ R M denotes the sparse

oefficient vector for the data y i . λ > 0 is a parameter and is used

o balance the effects of the two components in (17) . The opti-

ization problem in (17) is convex and can be solved by various

ethods. In [28] , Zhang and Levine used the linearized alternating

irection method with adaptive penalty (LADMAP) [47,48] to solve

his problem because of its high efficiency. 

Here, we perform an experiment to demonstrate the robustness

f the RSR model to non-Gaussian noise or sparse “outliers”. Sim-

lar to [15] , we select half of the images in the Extended Yale B

atabase for training and the rest for testing. In the experiment,

he pixel intensities of the original images are used as features and

tacked as columns of the dictionary matrix D and the data matrix

 . Then the representation coefficient matrix X and reconstruction

atrix E are obtained by solving (17) . 

As shown in Fig. 6 , the images reconstructed by the RSR model

re superior to those reconstructed by the traditional SR model.

or example, there are some ghosts near the eye regions labeled

y a green rectangle in Fig. 6 (b1) reconstructed using the tradi-

ional SR model. This phenomenon looks more severe in Fig. 6 (b2).

n contrast, these ghosts are greatly reduced in the images re-

onstructed by the RSR model, as shown in Fig. 6 (c1) and (c2).

his also demonstrates that the RSR model is more robust to non-

aussian noise or sparse “outliers” than the traditional SR model. 

In order to effectively extract and utilize multiple features for

ach local image patch during the fusion process, Zhang and Levine

eneralized the RSR model to multi-task sparsity pursuit and pre-

ented a multi-task RSR (MRSR) model [28] . In MRSR, the multi-

ask sparsity pursuit is achieved by enforcing a joint sparsity con-

traint on the reconstruction errors across all the tasks. 

Let Y k = 

[
y k, 1 , y k, 2 , . . . , y k,N 

]
∈ R n k ×N ( k = 1 , 2 , . . . , K) consist of K

eature matrices for K different types of features. The vector y k,i ∈
 

n k denotes the k th type of feature of dimension n k for the i th im-

ge patch. Correspondingly, the columns y k,i ∈ R n k ( k = 1 , 2 , . . . , K)

n these matrices with the same index i and different k denote dif-

erent types of features for the same i th image patch. N denotes

he total number of patches in the image to be considered. Then
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Fig. 5. Illustration of GSR coefficients. (a) Test image; (b) and (c) SR coefficients and GSR coefficients for the red rectangle patch in (a), respectively; (d) and (e) SR coefficients 

and GSR coefficients for the white rectangle patch in (a), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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he MRSR coefficients are assumed to satisfy [28] : 

min 

X k , E k 

K ∑ 

k =1 

‖ 

X k ‖ 1 + λ‖ 

E ‖ 2 , 1 

.t. Y k = D k X k + E k , k = 1 , 2 , . . . , K 

, (18) 

here D k ∈ R n k ×M k is a dictionary with M k prototype atoms for the

 th type of feature. X k ∈ R M k ×N and E k ∈ R n k ×N denote the SR coef-

cients and the reconstruction errors for the k th feature matrix Y k ,

espectively. The joint error matrix E is formed by concatenating

he vertical columns of matrices E , E , ... , E . 
1 2 K 
As discussed in [28,49] , the corresponding columns in the ma-

rices E 1 , E 2 , ... , E K with the same index will be compelled to have

imilar magnitudes by imposing the l 2, 1 -norm minimization on

he matrix E . As for the RSR model, the optimization problem of

RSR can also be solved using LADMAP [47,48] . 

.6. Summary 

A close look at the aforementioned algorithms reveals that the

ssential difference among the SR models discussed above is where

hey apply the constraints, either on the representation coeffi-

ients, the reconstruction errors or on both. It can also be noticed
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Fig. 6. Reconstructed results for images with occlusions. (a1) and (a2) are occluded test images of the first subject in the Extended Yale B database with 23% and 61% 

occlusion, respectively; (b1) and (b2) are reconstructed images using the dictionary atoms from the first subject and their corresponding SR coefficients for (a1) and (a2), 

respectively; (c1) and (c2) are reconstructed images using the dictionary atoms from the first subject and their corresponding RSR coefficients for (a1) and (a2), respectively; 

(d1) and (d2) indicate the RSR reconstruction errors for (a1) and (a2), respectively. 

Table 2 

Summary of the sparse representation models employed in multi-sensor image fusion. 

Models Representation coefficients constrains Reconstruction error constrains 

Least-squared-error-based SR Sparsity constraint Least squared minimization constraint 

NNSR Sparsity and non-negativity constraint 

JSR Sparsity common component and 

innovation components constraint 

GSR Group-sparsity constraint 

Sparse-error-based RSR Sparsity constraint Sparsity constraint 

MRSR Sparsity constraint Joint sparsity constraint cross error 

matrices of multiple tasks 
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p  
that the traditional SR, NNSR, JSR and GSR models impose dif-

ferent constraints on the representation coefficients but the same

least squared minimization constraint on the reconstruction er-

rors. These SR models can thus be called least-squared-error-based

models. Differently, the RSR model and MRSR models replace the

conventional least-squared reconstruction error with a so-called

sparse reconstruction error. Therefore, the RSR and MRSR models

can be called sparse-error-based models. 

In contrast to those least-squared-error-based SR methods, us-

ing the sparse-error significantly improves the robustness of the

RSR model against the non-Gaussian noise or sparse but strong

corruptions, thereby facilitating practical applications. More impor-

tantly, many important features, including the detailed information

contained in an image, can be denoted by the sparse error compo-

nents obtained using the RSR model. Table 2 summarizes the pre-

viously mentioned sparse representation models. 

Basically, the NNSR, JSR, GSR, RSR, and MRSR models somewhat

improve the traditional SR model in various aspects, and they gen-

erally perform better than the SR model when applied to multi-

sensor fusion applications. However, it is difficult to explain the

suitability of a model for a specific application from the general

point of view. Instead, we draw the conclusion according to the

experimental results, which reveal that the RSR model seems to

be more suitable for multi-focus image fusion; the NNSR and JSR

are more suitable for multi-modality image fusion; and the GSR

model can facilitate both as it achieves generally good results for

these two applications. It is necessary to point out that the per-

formance may be further improved if the dictionary of a model

complies with the characteristics of the data. That is to say, it does
 a  
ot make sense to expect a universal dictionary that can enhance

he performance of all the models. As a result, designing an appro-

riate dictionary for each model deserves further investigation. 

. Dictionary learning methods in multi-sensor image fusion 

Constructing a good dictionary is of fundamental importance

or the performance of an SR-based image fusion method. Gen-

rally, there are two categories of methods to construct an over-

omplete dictionary. The first one uses some fixed basis [18,50] . In

18] for instance, an over-complete separable version of the DCT

ictionary is constructed by sampling cosine waves with different

requencies. In [50] , a hybrid dictionary consisting of a DCT basis,

 wavelet ‘db1’ basis, a Gabor basis and a ridgelet basis is con-

tructed. Employing a fixed basis has the advantages of simplicity

nd fast implementation. Since this approach is not customized by

sing appropriate input image data, it may provide inferior perfor-

ance for certain types of data and applications. 

The second category of methods is to construct an over-

omplete dictionary by using some learning methods, such as

CA, MOD and K-SVD [24] . These methods can be further divided

nto global-trained-dictionary-based [19,22,44,50] and adaptively-

rained-dictionary-based [23,27,28,30,45] , according to their em-

loyed training images. In the former methods, a public training

atabase that generally contains many high-resolution images is

mployed to construct the training data for dictionary learning.

or example, in [19] , the training data consists of 10 0,0 0 0 8 × 8

atches, randomly sampled from a database of 40 high-quality im-

ges. While in the latter methods, the input images are directly
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w  
sed to construct the training data. For example, in [27] , the train-

ng data for dictionary learning contains 20,0 0 0 8 × 8 patches,

hich are randomly sampled from the source infrared and visible

mages. In [23] , local patches from the input multi-focus images

re used as the training samples to learn a dictionary. In [28] , the

nput image patches are directly employed to construct an over-

omplete dictionary. These dictionaries are adaptive to the input

mage data and thus have the potential to outperform the com-

only used fixed dictionaries. Accordingly, these learned dictionar-

es are more widely adopted in SR-based image fusion. In the rest

f this section, we review some dictionary learning methods used

n multi-sensor image fusion. 6 

.1. Dictionary learning using K-SVD 

Let Y = [ y 1 , y 2 , . . . , y N ] ∈ R n ×N be a training data matrix, where

 i ∈ R n is the i th sampled data vector. Our goal is to learn a dic-

ionary D = [ d 1 , d 2 , . . . , d M 

] ∈ R n ×M and a sparse coefficient matrix

 = [ x 1 , x 2 , . . . , x N ] ∈ R M×N , such that the product of D and X can

pproximate the original data matrix Y efficiently. If X were known,

he over-complete dictionary D could be obtained from the matrix

 via solving 

in 

D,X 
‖ 

Y − DX ‖ 

2 
F s.t. ‖ 

x i ‖ 0 ≤ τ, i = 1 , 2 , . . . , N, (19)

here τ denotes the upper bound for the number of the non-zero

ntries in x i . The solution to (19) for both D and X can be ob-

ained by using the popular dictionary learning algorithm K-SVD

24] , which iteratively alternates between two steps: sparse coding

find X ) and dictionary updating (find D ). 

In the sparse coding step, D is assumed to be fixed, and the op-

imization problem of (19) is reduced to a search for sparse repre-

entations with coefficients summarized in the matrix X . For that,

he criterion is rewritten as 

 

Y − DX ‖ 

2 
F = 

N ∑ 

i =1 

‖ 

y i − D x i ‖ 

2 
2 . (20) 

Therefore, the problem in (19) can be decoupled into N opti-

ization problems of the form 

in 

x i 
‖ 

y i − D x i ‖ 

2 
2 s.t. ‖ 

x i ‖ 0 ≤ τ, i = 1 , 2 , . . . , N. (21)

his problem can be efficiently solved by the MP [36] and OMP

37] algorithms mentioned in Section 2 . 

In the dictionary updating stage, the coefficient matrix X and

he dictionary D are both assumed to be fixed. Only one column d k 
n the dictionary and the coefficients that correspond to it (i.e., the

 th row of X , denoted as x T 
k 

) are considered each time. For that, the

ultiplication DX in (19) is decomposed into the sum of K rank-1

atrices. During the updating, K -1 terms are supposed to be fixed

nd one, i.e., the k th, remains in question. More specifically, the

etric in (19) is rewritten as [24] 

 

Y − DX ‖ 

2 
F = 

∥∥∥∥∥Y −
M ∑ 

j=1 

d j x 
T 
j 

∥∥∥∥∥
2 

F 

= 

∥∥∥∥∥
( 

Y −
∑ 

j � = k 
d j x 

T 
j 

) 

− d k x 
T 
k 

∥∥∥∥∥
2 

F 

= 

∥∥E k − d k x 
T 
k 

∥∥2 

F 

, (22) 

here E k stands for the error for all the N samples when the k th

tom is removed. Minimizing the function in (22) is equivalent to

nding a rank-1 matrix that closely approximates the error term

 in Frobenius norm. The rank-1 matrix is described by the atom
k 

6 It should be noted that the methods to be discussed are adopted for the global- 

rained dictionaries as well as the adaptively-trained dictionaries. 

o  

d  

H

r

 k and the row vector x T 
k 

. These can be obtained simply by using

ingular value decomposition (SVD) on E k . Moreover, to ensure the

parsity of the vector x T 
k 
, some modifications are further performed

n (22) . More details can be found in [24] . 

.2. Dictionary learning using MOD-like 

In [30] , the authors present a dictionary learning method

termed as MODJSR ) for the JSR model. Similar to the traditional

ictionary learning methods using K-SVD, MODJSR is also imple-

ented by alternating the sparse coding stage and the dictionary

pdating stage. In the second stage, dictionary updating is per-

ormed as a problem by the “Landweber” update [51] with an ini-

ial point obtained by the method of optimal directions (MOD).

his method is shown to have higher computational efficiency than

he K-SVD method. 

Suppose Y k ∈ R n ×L (k = 1 , . . . , K) are signals from the same en-

emble, i.e., from different source images of the same scene. Mo-

ivated by dictionary learning for the standard SR, the dictionary

earning method, MODJSR, for the JSR model is defined as [30] 

in 

D,X 

1 

2 

‖ 

Y − D X ‖ 

2 
F s.t. ‖ 

x t ‖ 0 ≤ τ, t = 1 , 2 , . . . , L. (23)

ere, the data set matrix Y ∈ R nK × L , the dictionary matrix

 ∈ R nK ×(K +1) M and the coefficient matrix X ∈ R (K+1) M×L are con-

tructed as in (7), (8) , and (9) , respectively. τ denotes the maximal

umber of non-zeros coefficients used in each column of X . 

Adopting the block-coordinate descent idea, an alternating

trategy is used to solve (23) with two stages. The first stage em-

loys a joint sparse coding. That is, fixing the dictionary D , the

oint sparse coefficient matrix X can be obtained by solving (10) via

MP [37] to take advantage of its simplicity and fast execution. 

The second stage updates the dictionary. Fixing the joint sparse

oefficient matrix X , the dictionary D in (23) could be updated sim-

ly by ˆ D = Y X T (X X T ) −1 with MOD. However, XX 

T may not always

e full rank. The majorization method could be also directly em-

loyed, but it is slow due to using the “Landweber” update which

s a gradient update. If the dictionary is updated by the “Landwe-

er” update, the initial point can be obtained by MOD. Then D is

ound by solving [30] 

in 

D 
f (D ) = min 

D 

1 

2 

‖ 

Y − D X ‖ 

2 
F 

= min 

D 

K ∑ 

k =1 

1 

2 

∥∥Y k − D 

(
X 

C + X 

U 
k 

)∥∥2 

F 

. (24) 

The optimum of the objective function satisfies 

 = 

d 

dD 

f (D ) . (25)

Hence, 

 = DH, (26) 

here W = 

∑ K 
k =1 Y k 

(
X C + X U 

k 

)T 
and H = 

∑ K 
k =1 

(
X C + X U 

k 

)
X C + X U 

k 

)T 
. Since X is sparse, the non-zero elements of H are

ften concentrated on the diagonal and H ii ≥ 0 (i = 1 , . . . , M) ,

ank (H) = M holds with high probability [52] due to Diago-

al Dominance theory. When rank (H) = M, the dictionary D is

imply updated by D = W H 

−1 . Otherwise, it is updated by the

Landweber” rule as [30,51] 

 

[ k +1] = D 

[ k ] + 

1 

σ

(
W − D 

[ k ] H 

)
H 

T , (27) 

here σ is a constant satisfying σ > ‖ H 

T H ‖ F . A good initial point,

btained by MOD and given by D 

[0] = W H 

♦ is employed while up-

ating the dictionary updating for higher computation efficiency.

ere H 

♦ is computed as H 

♦ = U �† U 

T and the matrices U and �

esult from the SVD of the matrix H , i.e., H = U �U 

T . 
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7 For pan-sharpening, the training sets may be constructed from the HR panchro- 

matic source images. 
3.3. Dictionary learning using PCA and joint patch clustering 

Since the connection of sparsity and clustering was shown to

be desirable in image restoration tasks [31,53] , some new dictio-

nary learning frameworks combined with clustering of non-local

patches were recently presented [54,55] . Motivated by clustering-

based dictionary learning techniques, the authors presented an ef-

ficient dictionary learning method based on a joint patch clustering

for multi-modal image fusion in [31] . This is also the first attempt

towards applying clustering-based dictionary learning to image fu-

sion. 

Conventional dictionary learning methods using K-SVD, such as

the ones discussed in the previous subsections, generally produce

redundant or highly structured dictionaries [31] . The proposed dic-

tionary learning in [31] aims to remove the redundancy while

maintaining or improving the quality of the multimodal image fu-

sion. Under an assumption that common image structures are dis-

tributed across the source images from different sensor modali-

ties, patches from different source images are clustered together

according to local structural similarities. Then sub-dictionaries that

best describe the underlying structure of each cluster by using only

a few principal components are constructed. Finally, these sub-

dictionaries are combined to form a final dictionary. 

Since each sub-dictionary consists only of a few principal com-

ponents of each joint patch cluster, the final dictionary constructed

ends up with much smaller size than those learned by K-SVD. Al-

though it is more compact, the constructed dictionary still contains

the most informative components from each joint patch cluster. As

a result, the computational complexity of the subsequent fusion

method is greatly reduced while the fusion performance is main-

tained. 

3.4. Dictionary learning for adaptive sparse representation 

In the traditional SR models introduced in Section 2 , a highly

redundant dictionary is always needed to satisfy signal reconstruc-

tion requirements since the structures vary significantly across dif-

ferent image patches. However, this may result in potential visual

artifacts as well as high computational cost. To address this prob-

lem, Liu and Wang [22] introduced an adaptive sparse representa-

tion (ASR) model, in which a set of more compact sub-dictionaries

are learned from numerous high-quality image patches. These

patches have already been pre-classified into several correspond-

ing categories based on their gradient information. 

Let P = { p 1 , p 2 , . . . , p N } be a training data matrix, where p i ∈
R n is the i -th sampled data or image patch. The patches in set P

are first classified into K categories { P k | k = 1 , 2 , . . . , K } according

to their dominant gradient directions. Then a total of K + 1 sub-

dictionaries { D o , D 1 , . . . , D K } are obtained, in which D 0 is learned

from all the patches in P having no clear dominant directions,

whereas { D k | k = 1 , 2 , . . . , K } is learned from the patches in each

corresponding subset { P k | k = 1 , 2 , . . . , K } that have specific domi-

nant directions described by category k . In this method, the dom-

inant gradient direction of each signal y i is first computed, after

which the sub-dictionary D k i 
is adaptively selected as the dictio-

nary. An example of the ASR dictionary learning with K = 6 is

shown in Fig. 7 . 

3.5. Coupled dictionaries learning 

In [56] , sparse representation was applied to single image

super-resolution. The main idea of the method is to assume that

the up-sampled low-resolution (LR) and high-resolution (HR) im-

age patch pairs share the same sparse coefficients with respect to

their own dictionaries. Recently, this idea was applied to multi-

sensor image fusion [25,57,58] as well as pan-sharpening [26,59] . 
In order to construct a pair of coupled dictionaries, two training

ets for the LR and HR dictionaries are first constructed from the

ame set of HR training images 7 as shown in Fig. 8 and explained

hereafter. Each high-resolution image I is blurred and down-

ampled (with a user-defined factor) to generate a LR image. The

atter is then up-sampled back to the original size using Bicubic in-

erpolation and the resulting image is seen as a LR image. A pair of

raining sets 
{

y H 
i 

∈ R n | i = 1 , 2 , . . . , N 

}
, 

{
y L 

i 
∈ R n | i = 1 , 2 , . . . , N 

}
are

hus created by extracting patches from the original HR image I

nd its degraded LR version, respectively, in which y H 
i 

and y L 
i 

with

he same index i correspond to the same spatial position in the

R and LR images. With the assumption that sparse coefficients of

he LR image patch y L 
i 

over the LR dictionary D L ∈ R n × M are the

ame as those of the HR image patch y H 
i 

over the HR dictionary

 H ∈ R n × M , the coupled dictionaries D H and D L can be learned by

olving the following optimization problem [25] 

 

D H , D L , X } = arg min 

D H , D L ,X 

N ∑ 

i =1 

∥∥y H i − D H x i 
∥∥2 

2 
+ 

N ∑ 

i =1 

∥∥y L i − D L x i 
∥∥2 

2 

.t. ∀ i ‖ 

x i ‖ 0 ≤ τ

, (28)

here X = [ x 1 , x 2 , . . . ., x N ] ∈ R M×N is the matrix containing

he sparse coefficients, and τ controls the sparsity level. By

ntroducing auxiliary variables Y H = [ y H 
1 
, y H 

2 
, . . . , y H 

K 
] ∈ R n ×N ,

 

L = [ y L 
1 
, y L 

2 
, . . . , y L 

N 
] ∈ R n ×N , Y = [ ( Y H ) 

T 
, ( Y L ) 

T 
] T ∈ R 2 n ×N , and

 = [ ( D H ) 
T 
, ( D L ) 

T 
] T ∈ R 2 n ×M , problem (28) is equivalently trans-

ormed to (19) and can thus be efficiently solved by K-SVD. 

.6. Summary 

As discussed in this section, many dictionary learning meth-

ds have been presented or applied to multi-sensor image fusion.

mong these methods, the K-SVD method, thanks to its simplic-

ty and generalization, is the most broadly adopted by the existing

R-based fusion methods. To some extent, the learning procedure

f the ASR dictionary and the coupled dictionary are also K-SVD

ike based on the same principle. It is worthwhile pointing out that

ach dictionary learning method has its pros and cons, meaning

hat there is no universal dictionary that suits all applications. 

Using these methods, a globally-trained dictionary or an

daptively-trained dictionary can be generated during the fusion

rocess. These learned dictionaries are adaptive to the input im-

ge data and usually perform better than the fixed dictionaries in

erms of the extraction and representation of significant features in

n image. However, these learned dictionaries generally contain a

arge number of atoms in order to accurately reconstruct an input

mage patch. This increases the redundancy among the dictionary

toms and thus degrades the subsequent fusion performance to

ome extent. Moreover, this also increases the computational com-

lexity of a fusion method. In Table. 3 , we compare some existing

ictionary learning methods with respect to the number of sub-

ictionaries, redundancy, applicable model and consumed compu-

ation power. Nevertheless, how to learn a dictionary with a fixed

mall number of atoms and yet maintain a good representation ca-

ability for different SR models and fusion applications is desirable

nd still a challenging problem in multi-sensor image fusion. 

. Applications of different SR-based fusion methods 

So far, SR-based image fusion methods have been used in a

ide variety of applications, such as multi-focus image fusion, and

ulti-modality (e.g., infrared and visible light) image fusion. These
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Fig. 7. Learning sub-dictionaries in the ASR model. (a) Illustration of the dominant orientation division; (b)–(h) Learned sub-dictionaries { D k | k = 0 , 1 , . . . , 6 } , respectively. 

(Credit to [22] ). 

Table 3 

Comparison of different dictionary learning methods. 

Number of dictionaries Redundancy Applied model Computation efficiency 

K-SVD-DL 1 High SR, RSR, MRSR Low 

MOD-DL 1 High JSR High 

PCA-DL 1 (Multiple sub-dictionaries) Low SR, GSR, RSR, MRSR High 

ASR-DL > 1 (Specific dominant directions) + 1 (common) Low SR, RSR, MRSR Medium 

Coupled-DL 2 High SR, NNSR, RSR, MRSR Low 
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8 The test images in Fig. 9 and the soon Fig. 11 are downloaded from http://home. 

ustc.edu.cn/ ∼liuyu1 . 
pplications are targeting different fusion goals, and thus have dif-

erent fusion strategies. In this section, we will review some appli-

ations of SR-based fusion methods for fusing multi-focus images

r infrared with visible images. 

.1. Multi-focus image fusion 

Due to the limited depth-of-focus of optical lenses in CCD de-

ices, it is often not possible to obtain an image that contains all
f the relevant objects in focus. As shown in Fig. 9 , 8 this issue can

e overcome by multi-focus image fusion, in which several images

ith different focus points (e.g., Fig. 9 (a) and (b)) are combined to

orm a composite image (e.g., Fig. 9 (c)) with full-focus. The basic

equirement for multi-focus image fusion is that only the focused

egions should be extracted from the given multi-focus input im-

http://home.ustc.edu.cn/~liuyu1
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Fig. 8. Procedure to construct the training sets for the coupled dictionaries. 

Fig. 9. Illustration of multi-focus image fusion. (a) Focus on the flower; (b) Focus on the clock; (c) Fused image with full-focus. 
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ages and then preserved in the fused image, while all of the defo-

cused regions should be discarded. 

As shown in Fig. 2 in Section 1 , the SR-based multi-focus im-

age fusion generally involves the following steps: (1) Divide the

source images into a larger number of image patches of the same

size (e.g., 8 × 8). In order to reduce block artifacts and improve ro-

bustness to mis-registration, a sliding window at a step length of

a fixed number of pixels (e.g., one pixel) is also often used in this

step. That is to say, these patches overlap by a fixed number of pix-

els along the horizontal and vertical directions, respectively. (2) Re-

order each of these patches as a vector of n -dimensions (e.g., n =
8 × 8 = 64 ). (3) Sparsely code these vectors via different SR mod-

els and pre-constructed dictionaries introduced in Sections 2 and

3 . The traditional SR model introduced in Section 2.1 is the most

widely used in multi-focus image fusion. The dictionaries directly

learned from a set of training images with high-resolution using K-

SVD are also the most popular in these methods. (4) Define activ-

ity levels and then construct the fused image with different fusion

rules. 

Activity level reflects the importance of each local image patch.

Particularly, for multi-focus image fusion, the activity level should

reflect the focus information of each image patch. In SR-based

multi-focus image fusion methods, the activity level is generally

defined as the l 0 -norm, l 1 -norm or the l 2 -norm of the sparse coef-

ficient vector for each image patch, i.e., 

A ( p k i ) = 

∥∥x k i 

∥∥
j 

(29)

where p k i denotes the i th patch from the k th source image, x k i 
denotes the representation coefficient vector corresponding to the
atch p k i , and j = 0 , 1, or 2 describes which norm function is em-

loyed to define the activity level. 

Sometimes, relatively more sophisticated activity levels are also

efined. For example, in [23] , the correlation between the sparse

epresentation of the input images and the pooled features ob-

ained in the previous dictionary learning phase is used as the

ecision map for the fusion. As opposed to most SR-based multi-

ocus image fusion methods employing the sparse representation

oefficients to define activity level, the fusion method presented in

28] employs the sparse reconstruction error, more specifically, the

 2 -norm of each column vector in the sparse error matrix obtained

y the RSR model, to define the activity level for each source image

atch. 

There are two different ways to construct the fused im-

ge after the activity level of each image patch is determined.

ccordingly, different SR-based multi-focus image fusion meth-

ds are divided into two categories, transform-domain-based and

patial-domain-based . In the transform-domain-based fusion meth-

ds [18,22,29,50,60–64] , the representation coefficients of fused

mage patches are first obtained from the corresponding represen-

ation coefficients of source image patches according to their activ-

ty levels. Then the fused image patches are constructed by mul-

iplying the pre-defined dictionary with the obtained representa-

ion coefficients. On the other hand, in the spatial-domain-based

usion methods [23,28] , the fused image patches are directly ex-

racted from the source image patches according to their activity

evels. 

In general, both the maximum-selection and weighted-

veraging fusion rules (or fusion strategies) might be employed to
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Table 4 

Some state-of-the-art SR-based multi-focus image fusion methods. 

Method Model Dictionary Fusion rule 

[18,50,60,61] SR Learned from a set of images [18,50,61] 

Fixed DCT basis [18,50,60] 

Fixed hybrid basis [50] 

Fixed hybrid basis [50] 

Maximum l 1 -norm selection of representation coefficient vectors [18] 

Maximum selection of absolute coefficient vector entries [50] 

Maximum l 2 -norm selection of representation coefficient vectors [60] 

Weighed averaging of representation coefficient vectors [61] 

Transform- 

domain- 

based 

[29] Group SR Learned from a set of images Maximum l 2 -norm selection of representation coefficient vectors 

[22] Adaptive SR Multiple dictionaries with different 

dominant directions learned from a 

set of images 

Maximum l 1 -norm selection of representation coefficient vectors 

[62,63] JSR Learned from source images Summing of representation coefficient vectors 

[64] Extended JSR Learned from a set of images Maximum l 1 -norm selection of representation coefficient vectors 

[23] SR Learned from source images Maximum correlation between the sparse representations of input 

source images and the training pooled features 

Spatial-domain- 

based 

[28] RSR Data itself Maximum l 2 -norm selection of sparse reconstruction error vectors 

[28] Multi-task RSR Data itself Maximum l 2 -norm selection of joint sparse reconstruction error 

vectors 

Fig. 10. Illustration of infrared and visible image fusion. (a) Infrared image; (b) Visible light image; (c) Fused image. 
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etermine the fused image patches or their representation coeffi-

ients. However, in the SR-based multi-focus fusion methods, the

aximum-selection fusion rule is more popular. In this approach,

he fused image patch or its sparse representation is generally se-

ected from the input image patch or its sparse representation with

he highest activity level. Some state-of-art SR-based multi-focus

mage fusion methods are summarized in Table 4 . 

.2. Multi-modality image fusion 

It is becoming more common to employ multiple types of imag-

ng sensors in video surveillance to improve the robustness, in

hich visible light and infrared imaging sensors are normally com-

ined. Image fusion allows the information captured by these dif-

erent sensors to be sufficiently and effectively integrated to create

 composite image, containing more useful information than any

f the individual input images. This image can be used to better

nterpret the scene [3] . Multi-modality image fusion has also been

idely applied to many other fields such as medical imaging. 

A video surveillance application is shown in Fig. 10 (a), where

he moving person is evident in the image taken by the in-

rared video camera. However, the scene environment (e.g., the

edges and the shrubs) is better displayed in the visible-light im-

ge ( Fig. 10 (b)), in which the moving targets are difficult to see. By

using the two input images, the moving target from the infrared

amera and the background scene (or the environment) from the

isible light camera are well integrated. As shown in Fig. 10 (c), the

used image clearly shows that there is a man in the scene. 

SR has also been applied to multi-modality image fusion, in-

luding infrared and visible light sensors [19,27,30,31,44,45,65] .

ue to different imaging technologies of the sensors, these multi-

odality images of the same scene captured by different image
ensors provide redundant and complementary information. The

asic job of a multi-modality image fusion approach is to prop-

rly employ the redundant and complementary information avail-

ble from the different input images [66] . 

Interestingly, this notion maps well into the JSR model and

his is reflected by the fact that, in addition to the traditional

R model, the JSR model is popular in multi-modality image fu-

ion [30,44,45,70] . The reason for this is that in the JSR model, all

he signals from the same ensemble are automatically decomposed

nto a common component that is shared by all the signals and an

nnovation component that describes each individual signal. The

ommon component describes the redundant information among

ll the signals, while the innovation component describes the com-

lementary information [45] . Accordingly, JSR already extracts the

equired information needed for fusion. In the subsequent fusion

hase, the innovation components for the input images are com-

ined together by using a weighted-averaging [30,45] or a sum-

ing [44,70] fusion strategy. The final fused image is obtained by

ntegrating the common component shared by all the input images

nto the previously combined innovation component. 

Finally, it should be noted that almost all SR-based multi-

odality image fusion methods are transform-domain-based. This

ay result from the fact that patches from the multi-modality

nput images corresponding to the same spatial positions have

reatly diverse characters because of the different sensor technolo-

ies. Subsequently, many spatial artifacts will be introduced dur-

ng the fusion if a spatial-domain-based method is adopted which

ends to produce higher activity levels. Alternatively, a transform-

omain-based method may reduce the artifacts to some extent.

able 5 summarizes some state-of-art SR-based multi-modality im-

ge fusion methods. 



70 Q. Zhang et al. / Information Fusion 40 (2018) 57–75 

Table 5 

Some state-of-the-art SR-based multi-modality image fusion methods. 

Methods Model Dictionary Fusion rule 

[19,31,65,67–69] SR Learned from a set of images [19,68,69] 

Learned from source images [31,65,67] 

Maximum l 1 -norm selection of representation coefficient vectors [19,69] 

Maximum l 2 -norm selection of representation coefficient vectors [68] 

Maximum selection of (absolute) coefficient vector entries [65,67] 

Summing of representation coefficient vectors [31] 

[29] Group SR Learned from a set of images Maximum l 2 -norm selection of representation coefficient vectors 

[22] Adaptive SR Multiple dictionaries with different dominant 

directions learned from a set of images 

Maximum l 1 -norm selection of representation coefficient vectors 

[27] NNSR Learned from source images Maximum l 1 -norm & sparseness selection of representation coefficient vectors 

[30,44,45,70] JSR Learned from a set of images [44,70] 

Learned from source images [30,45] 

Summing of representation coefficient vectors [44,70] 

Weighted averaging of representation coefficient vectors [30,45] 

Fig. 11. 10 pairs of multi-focus test images. The top row contains 10 input images with the focus on the left part, and the bottom row contains the corresponding input 

images with the focus on the right part. 
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9 The dictionaries used in the models mentioned in Table 6 are learned from a 

database containing 24 high-resolution training images that are downloaded from 

http://r0k.us/graphics/kodak/ . 
4.3. Applications to other fields of image fusion 

In addition to the fusion of multi-focus images and multi-

modality images, SR theory has also been exploited in other appli-

cations in image fusion. See for example these representative pa-

pers on remote sensing image fusion (also called pan-sharpening )

[26,59,71–78] and multi-exposure [79] image fusion. SR models,

dictionary construction (or learning) and fusion rules are also three

key components in these SR-based remote image fusion methods.

Further the traditional SR model is still the most popular in these

methods. However, many of the dictionary construction and fu-

sion rules employed in these methods are different from those

in the fusion methods for multi-focus images and multi-modality

images. Accordingly, many SR-based remote sensing image fusion

methods are quite different from those used in SR-based multi-

focus image fusion and multi-modality image fusion as discussed

in the previous two sub-sections. This may be partially due to the

fusion goal of pan-sharpening, which is to obtain a high spatial-

resolution multispectral (HRM) image with the same spectral re-

sponse as the multispectral (MS) sensor but the spatial-resolution

of the panchromatic (PAN) sensor [59] . Considering these signif-

icant differences and the considerable length of the current pa-

per, it seems best to employ a separate paper to properly describe

these SR-based remote sensing image fusion approaches. This is

such an important topic, and we have already started these inves-

tigations. 

5. Experiments and analysis 

As discussed in the previous sections, SR models, learned dictio-

naries and activity levels are three important issues in SR-based fu-

sion methods. In this section, we will discuss the impacts of these

three components on the fusion performance in the context of the

previous two applications. For this purpose, we employ two sets of

test images, as shown in Figs. 11 and 12 . The two sets of test im-

ages contain 10 pairs of multi-focus images and 10 pairs of infrared

and visible images, respectively. 

In addition, we employ the mutual information ( MI ) [80] , the

gradient preservation fusion quality metric Q G [81] , and the struc-

ture similarity (SSIM) fusion quality metric Q S [82] to evaluate dif-

ferent fusion methods on the basis of the amount of spatial infor-
ation extraction. We also use two phase congruency-based fusion

uality metrics Q ZP [83] and Q PC [10] to evaluate different fusion

ethods in terms of spatial consistency. For the metric Q ZP , the

ero-mean normalized cross-correlation (ZNCC) of the phase con-

ruency maps between the fused image and input images is com-

uted. While for the metric Q PC , the phase congruency maps of the

used image and input images are computed separately, and the

radient preservation metric in [81] is also employed. Note that

he size of local windows or blocks (if required) is set to 8 × 8 in

his paper. Other parameters are set to their default values during

he computation of these metrics. Larger values of these metrics

ndicate better performance of a fusion method. 

In these experiments, the SR-based fusion methods are applied

n a patch by patch basis. That is, the source images are first di-

ided into many patches of the same size and then these patches

re fused. The size of the patches is set to 8 × 8 as referring to

he experimental results in [18] . Accordingly, the size of the dictio-

ary atoms is also set to 8 × 8. In addition, in order to improve

he robustness to mis-registration and reduce the spatial artifacts,

 sliding window technology is employed, i.e., the patches overlap

y one pixel. 

.1. SR Models 

Next, the impact of different sparse representation models

listed in Table 6 9 ) on the fusion performance will be discussed. In

ddition to those SR-based fusion methods in Table 6 , some MST

usion methods, including NSCT, Curvelet and neighbor distance

ND) [84] , are also compared, in which the simple “averaging” and

maximum absolute selection” fusion rules are employed to fuse

he low-pass sub-band coefficients and the band-pass directional

ub-band coefficients, respectively. Table 7 provides the scores of

he different fusion methods on the two sets of test images, in

hich the average time T a of different SR-based fusion methods

re also provided. The experimental results in Table 7 indicate that

he sparse representation model has a great effect on the fusion

erformance. As shown in Table 7 , fusion performance varies sig-

http://r0k.us/graphics/kodak/
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Fig. 12. 10 pairs of multi-modality test images. The top row contains 10 visible input images, and the bottom row contains the corresponding infrared input images. 

Table 6 

Different fusion methods with various SR models and their key parameters. 

Model Dictionary Fusion rule 

SR [15,18,19] Learned from a set of images using K-SVD method [19] , with 512 atoms 

ASR [22] Multiple dictionaries [22] with different dominant directions learned from a 

set of images using K-SVD method, each of them with 512 atoms 

GSR [29] Learned from a set of images using the patch-clustering method [31] , 

with 489 atoms 

Maximum l 1 -norm selection of representation 

coefficient vectors 

NNSR [27] Learned from a set of images using the method in [42] , with 512 atoms 

JSR [30,43,45] Learned from a set of images using K-SVD method [19] , with 512 atoms 

RSR [28] Learned from a set of images using K-SVD method [19] , with 512 atoms Maximum l 2 -norm of sparse reconstruction errors 

Table 7 

Performance of different SR models on the two sets of test images. Scores for all image pairs in each dataset 

are averaged. 

Test images Models MI Q G Q S Q ZP Q PC T a (in seconds) 

Multi-focus images SR 4.1267 0.7584 0.5008 0.9533 0.6846 247.37 

ASR 4.0889 0.7548 0.4976 0.94 4 4 0.6773 231.65 

GSR 4.6534 0.7696 0.5097 0.9587 0.6940 118.62 

NNSR 4.0504 0.7565 0.4994 0.9574 0.6615 7497.22 

JSR 4.6081 0.7666 0.5108 0.9565 0.6934 4222.82 

RSR 4.8720 0.7691 0.5024 0.9681 0.6916 29.71 

NSCT 3.9026 0.7473 0.5134 0.9467 0.6539 1.53 

Curvelet 3.8025 0.7273 0.4961 0.9281 0.6325 1.88 

ND 4.0648 0.7526 0.5036 0.9427 0.6619 2.45 

Visible-infrared images SR 2.3239 0.6192 0.4225 0.8340 0.4208 226.79 

ASR 2.2411 0.5966 0.4154 0.8284 0.4112 240.76 

GSR 3.0451 0.6346 0.4240 0.8658 0.4486 106.11 

NNSR 2.8963 0.6194 0.4152 0.9025 0.4699 7470.42 

JSR 2.4258 0.6178 0.4205 0.7815 0.3992 592.31 

RSR 2.7403 0.6335 0.4320 0.7936 0.4129 26.96 

NSCT 1.4811 0.5113 0.4432 0.7639 0.3374 1.74 

Curvelet 1.3105 0.5153 0.4268 0.7368 0.3121 2.00 

ND 1.3702 0.5978 0.4563 0.7807 0.3553 2.80 

n  

i  

a  

m  

i  

T  

i  

a  

s  

m  

r  

n

 

p  

m  

f  

b  

s  

a  

M  

t

5

 

o  

e  

t  

k  

a  

(  

d  

(  

l  

[  

t  

W  

b  

a  

D  

s  

u  

t  
ificantly with the employed sparse representation model in an

mage fusion method. It also shows that the GSR performs the best

mong the six models considered here. In terms of most quality

etrics, it achieves the highest scores for the fusion of multi-focus

mages as well as for the fusion of infrared and visible images.

his may be due to the cluster structure sparsity prior employed

n the GSR model. In addition to GSR, RSR and NNSR could also

chieve satisfactory results when applied to multi-focus image fu-

ion and multi-modality image fusion, respectively. However, for

ulti-modality image fusion, JSR could not achieve a satisfactory

esult as it did in [30] . This might be due to the employed dictio-

ary KSVD-512 that was learned for SR rather than for JSR. 

Table 7 also indicates that SR-based fusion methods generally

erform better than the traditional MST fusion methods in infor-

ation extraction and spatial consistency for the fusion of multi-

ocus images as well as for the fusion of multi-modality images,

ut it comes with the great cost of computational complexity. As

hown in Table 7 , those SR-based fusion methods, especially NNSR

nd JSR, are more computationally expensive than those traditional

ST-based ones. This may be due to the greater time consumed in

he sparse coding phase within these methods. 
.2. Dictionary construction 

In this part, we will study the effect of the employed dictionary

n the fusion performance. In all the experiments conducted, we

mploy the traditional SR model, and the maximum l1-norm as

he fusion rule during the fusion process. Moreover, we test two

inds of over-complete dictionaries on the two sets of test im-

ges. The first is a 2-D over-complete DCT dictionary of size 512

DCT-512, for short) [18] . The second includes four global trained

ictionaries of size 128, 256, 512, and 1024. The four dictionaries

K SVD-128, K SVD-256, K SVD-512, and K SVD-1024, for short) are all

earned from image samples using the iterative K-SVD algorithm

24] . The training data consist of 50,0 0 0 8 × 8 patches, randomly

aken from the database mentioned in the previous Section 5.1 .

e also test three sets of adaptively trained dictionaries (denoted

y D vi -512,D ir -512, and D joint -512) on the infrared-visible test im-

ge set (i.e., the second set of test images). Each dictionary in the

 vi -512 set consists of 512 atoms and is learned from the corre-

ponding visible input image in the second set of test images by

sing the iterative K-SVD algorithm. Similarly, each dictionary in

he D -512 set is learned from the corresponding infrared input
ir 
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Table 8 

Performance of different dictionaries on the two sets of test images. Scores for all image pairs 

in each dataset are averaged. 

Test images Dictionary MI Q G Q S Q ZP Q PC 

Multi-focus images DCT-512 3.9947 0.7350 0.4732 0.8941 0.6443 

KSVD-128 3.8924 0.7439 0.4737 0.9012 0.6620 

KSVD-256 4.0344 0.7575 0.5003 0.9523 0.6826 

KSVD-512 4.1267 0.7584 0.5008 0.9533 0.6846 

KSVD-1024 4.0588 0.7532 0.4919 0.9321 0.6753 

Visible-infrared images DCT-512 2.3280 0.5892 0.3939 0.8195 0.4082 

KSVD-128 2.0021 0.5941 0.4009 0.7680 0.3858 

KSVD-256 2.2390 0.6179 0.4210 0.8287 0.4175 

KSVD-512 2.3239 0.6192 0.4225 0.8340 0.4208 

KSVD-1024 2.2528 0.6088 0.4158 0.8218 0.4124 

D vi -512 2.3111 0.6121 0.4196 0.8406 0.4218 

D ir -512 2.1703 0.6051 0.4126 0.8106 0.4059 

D joint -512 2.2774 0.6109 0.4184 0.8357 0.4216 

Table 9 

Performance of different activity levels on the two sets of test images. Scores for all image pairs 

in each dataset are averaged. 

Test images Activity level MI Q G Q S Q ZP Q PC 

Multi-focus images l 0 -norm 4.5006 0.7098 0.4774 0.9761 0.6529 

l 1 -norm 4.1267 0.7584 0.5008 0.9533 0.6846 

l 2 -norm 4.0761 0.7557 0.5025 0.9473 0.6755 

Visible-infrared images l 0 -norm 2.9882 0.5826 0.4037 0.9679 0.5246 

l 1 -norm 2.3239 0.6192 0.4225 0.8340 0.4208 

l 2 -norm 2.3390 0.6135 0.4217 0.8453 0.4242 
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image, and each dictionary in the D joint -512 set is learned from the

corresponding visible and infrared test images. 

Table 8 provides the fusion scores of different dictionaries on

the two sets of test images. According to Table 8 : (1) As ex-

pected, the global learned dictionaries usually perform better than

the fixed DCT dictionary. (2) The adaptively trained dictionaries in

D vi -512 and D joint -512 sets, especially the ones in the former set,

perform competitively with the global dictionary having the same

number of atoms when applied to multi-modality image fusion.

However, the dictionaries in the D ir -512 set that are adaptively

learned from the infrared input images do not perform better than

the global learned dictionary and the ones in D vi -512 and D joint -512

sets. This may be due to the fact that fewer patches in the infrared

images contain significant structures. As a result, the dictionaries

in the D ir -512 set have weak representation power and reduce the

fusion performance. In contrast, the visible input images contain

many more patches with significant structures. Correspondingly,

the dictionaries in the D vi -512 set seem to achieve better fusion

performance. (3) It can also be argued that the number of dic-

tionary atoms have a great impact on the fusion performance. As

shown in Table 8 , the dictionary KSVD-512 obtains the highest fu-

sion performance among the four global dictionaries studied when

applied to multi-focus image fusion as well as multi-modality im-

age fusion. For the dictionary KSVD-128, the number of dictio-

nary atoms seems too small, and some image patches (e.g., those

with significant details) are not well represented. Therefore, the fu-

sion performance is not comparable to the one obtained by using

the dictionaries KSVD-256 and KSVD-512. However, if the number

of dictionary atoms reaches certain values (e.g., 1024), there will

be many more atoms with similar features in the dictionary. This

may lead to the following fact. Those patches with similar features

(e.g., focus information) within a multi-focus input image, even for

those spatially-adjacent patches with greatly similar focus infor-

mation, may be reconstructed by using different dictionary atoms

and thus end up with different sparse representation coefficients.

In the subsequent fusion process, these spatially-adjacent patches,

even those with greatly similar focus information, are likely to be

desynchronized in the fused image. As a result, spatial artifacts will
 a  
e introduced to the fused image with the increase of the number

f the dictionary atoms. And this can degrade the fusion perfor-

ance to some extent. KSVD-1024 is one such example. In addi-

ion, this will also increase the computational complexity of a fu-

ion method. 

.3. Activity levels 

Thereafter, we discuss the impact of three activity level mea-

ures, l 0 -norm, l 1 -norm and l 2 -norm of representation coefficients

n (29) , on the fusion performance. In this experiment, we employ

he traditional SR model and the maximum-selecting fusion rule

uring the fusion process. The quantitative values obtained by the

mage fusion quality measures considered in Table 9 indicate that

he l 1 -norm of representation coefficients is a better choice among

he three activity levels mentioned here. It achieves higher scores

or the fusion of multi-focus images as well as for the fusion of

ulti-modality images, especially for the former. 

. Conclusion and discussion 

SR-based image fusion methods have attracted much attention

ecently. Sparse representation models, dictionary learning, and fu-

ion rules are three key components of in these techniques. In this

aper, we have presented a thorough survey on the issues related

o SR-based fusion methods. The following conclusions could be

rawn accordingly. 

For representation models, the traditional SR model is the most

opular in image fusion. Extensions, such as ASR, GSR, NNSR, JSR,

nd RSR models, have also been applied to image fusion. Fusion

erformance varies with these models depending on the appli-

ation. For example, GSR generally achieves better fusion perfor-

ance when applied to multi-focus image fusion as well as in-

rared and visible image fusion. RSR and NNSR might also be

 good choice for the fusion of multi-focus images and multi-

odality images, respectively. 

Regarding the dictionaries, the over-complete dictionaries with

 fixed basis (e.g., a DCT basis) and those learned from a set
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f training images ( global trained dictionary ) or the input images

hemselves ( adaptively trained dictionary ) have been applied to im-

ge fusion. Generally, the learned dictionaries could achieve better

usion performance than those with a fixed basis. The number of

toms in a dictionary has a strong impact on the fusion perfor-

ance. A compact dictionary with good representation capability

s greatly desirable in image fusion for high fusion performance

nd computational efficiency. However, this is still a challenging

roblem in that area. 

For fusion strategies, the l 0 -norm, l 1 -norm and l 2 -norm of the

epresentation coefficients or reconstruction errors are usually em-

loyed as the activity level. The maximum-selecting fusion rule is

mployed in most of the existing SR-based image fusion methods.

esigning more sophisticated activity levels and fusion rules for

R-based image fusion methods presents an interesting research

opic for the future. 

There are some other issues related to the SR-based fusion

ethods that should be considered in future work. First, most

f the SR-based image fusion algorithms have high computational

omplexity because of the increased time consumed during the

parse coding. This prevents SR-based methods from being used in

he applications that demand real-time operation. Secondly, most

f the current SR-based fusion methods are performed in a patch-

ased way. In order to improve the robustness to mis-registration

hile reducing the spatial artifacts, a sliding window technology is

ften employed. This results in the loss of detail information in the

used image and in the huge increase of computational complex-

ty. Alternatively, the newly merged convolutional SR-based (CSR)

usion method [85] may be an interesting attempt to address such

roblems. Last, but not least, most of the SR-based fusion meth-

ds independently consider the local information from each im-

ge patch during the fusion process, including the sparse coding

hase. In fact, strong correlations exist among each image patch

nd its spatially-adjacent neighbors. The fusion performance may

e greatly improved if a local consistency prior is taken into ac-

ount during the fusion process [28] . 
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